
TypeScript Fundamentals

Bogdan Manate

Agenda

● Introduction

● Motivation

● Installation

● Features

● Configuration file

● Type definition files

● Bundlers

● Write your own application

● Conclusion

Introduction

● TypeScript (TS) is a typed superset of JavaScript (JS) that compiles to plain JavaScript.

● Syntax based on ECMAScript 4 & ECMASCript 6 proposals.

● TS is first and foremost a superset of JS -> Any regular Javascript is valid TypeScript Code.

● ...and is developed by Microsoft.

Motivation

● Compile time error reporting

● Strong typing

● Type definitions (.d.ts files that provide easy integration for js projects)

● Encapsulation provided by classes

● Private, protected and public accessors

Motivation

Angular, Vue or React

Installation

● Run: npm install -g typescript
● Make sure the installation was successful: tsc -version

Features

● Supported data types

● Functions

● Classes

● Interface

● Namespace

● Modules

● Decorators

Features: Supported data types

*O’Reilly Programming with Typescript - Boris Cherny

Features: Functions

● Functions are the fundamental building block of any application in JS.

● In JS you build up layers of abstraction, mimicking classes, information hiding, and modules.

● In TS, while there are classes, namespaces, and modules, functions still play the key role in

describing how to do things.

Features: Interfaces

● Declared using interface keyword.

● There is no corresponding type in JS, therefore no JS code will result from compilation.

● Errors being shown when interface signature and implementation doesn’t match.

Features: Classes

● Can implement interfaces

● Inheritance

● Instance methods/members

● Static methods/members

● Single constructor

● ES6 class syntax

Features: Namespaces vs. Modules

Namespaces

● Namespaces are a TypeScript-specific

way to organize code.

● Namespaces are simply named

JavaScript objects in the global

namespace.

● Namespaces that can span multiple

files.

● Use them when you don't want to use

a module loader.

Modules

● Modules can contain both code and

declarations.

● Modules also have a dependency on a

module loader (CommonJS/Require)

● Each file that has a import or export

statement is considered a module.

● The most common way to organise

code.

Features: Decorators

● Decorators are available as an experimental feature of TypeScript.

● The experimentalDecorators compiler option should be enabled.

● Can be attached to a class declaration, method, accessor, property, or parameter.

● Decorators use the form @expression.

● expression must evaluate to a function that will be called at runtime with information about the

decorated declaration.

Configuration file

● The presence of a tsconfig.json file in a directory indicates that the directory is the root of a

TypeScript project.

● The tsconfig.json file specifies the root files and the compiler options required to compile the

project.

● A project can be compiled:
○ By invoking tsc with no input files - the compiler searches for the tsconfig.json (current dir and parent chain).
○ By running tsc with no input files and a --project (or just -p) and a path to a config file.

● A tsconfig.json file can be generated using tsc --init

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

Type definition files

● What about using plain JS libraries inside TS projects?

● The type definition files (*. d.TS) help you to overcome this problem.

● You don't have to define them yourself -> https://microsoft.github.io/TypeSearch/

● Installation: npm install --save-dev @types/lodash

● Usage: import * as _ from "lodash";

https://microsoft.github.io/TypeSearch/

Bundlers

● Node.js
○ Configure TS to output commonjs modules.

● Webbrowser
○ Requirejs (old) - module: amd
○ Systemjs (old) - module: systemjs
○ Webpack -module: es2015 or higher
○ Rollup -module: es2015 or higher
○ Browserify -module: commonjs
○ Parcel: -module: esnext

Write you own application

● Conway's Game of Life
● https://en.wikipedia.org/wiki/Conway%27s_Game_o

f_Life
● https://github.com/bogdanmanate/mvp-ts

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://github.com/bogdanmanate/mvp-ts

Conclusion

● TS is not a completely new language, so you still have to know the JS quirks.

● Optional static typing (the key here is optional)

● Type Inference, which gives some of the benefits of types, without actually using them explicitly

● Access to ES6 and ES7 features, before they become supported by major browsers

● The ability to compile down to a version of JavaScript that runs on all browsers

● Great tooling support with IntelliSense

